An isogeometric finite element formulation for geometrically exact Timoshenko beams with extensible directors

نویسندگان

چکیده

An isogeometric finite element formulation for geometrically and materially nonlinear Timoshenko beams is presented, which incorporates in-plane deformation of the cross-section described by two extensible director vectors. Since those directors belong to space ${\Bbb R}^3$, a configuration can be additively updated. The developed allows direct application three-dimensional constitutive equations without zero stress conditions. Especially, significance considering correct surface loads rather than applying an equivalent load directly on central axis investigated. Incompatible linear strain components have been added alleviate Poisson locking using enhanced assumed (EAS) method. In various numerical examples exhibiting large deformations, accuracy efficiency presented beam assessed in comparison brick elements. We particularly use hyperelastic materials St. Venant-Kirchhoff compressible Neo-Hookean types.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Finite Element Formulation for Buckling and Free Vibration Analysis of Timoshenko Beams on Variable Elastic Foundation

In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...

متن کامل

An Efficient Finite Element Formulation Based on Deformation Approach for Bending of Functionally Graded Beams

Finite element formulations based generally on classical beam theories such as Euler-Bernoulli or Timoshenko. Sometimes, these two formulations could be problematic expressed in terms of restrictions of Euler-Bernoulli beam theory, in case of thicker beams due to non-consideration of transverse shear; phenomenon that is known as shear locking characterized the Timoshenko beam theory, in case of...

متن کامل

Isogeometric Analysis for Nonlinear Dynamics of Timoshenko Beams

The dynamics of beams that undergo large displacements is analyzed in frequency domain and comparisons between models derived by isogeometric analysis and p-FEM are presented. The equation of motion is derived by the principle of virtual work, assuming Timoshenko’s theory for bending and geometrical type of nonlinearity. As a result, a nonlinear system of second order ordinary differential equa...

متن کامل

Geometrically Exact Finite Element Formulations for Curved Slender Beams: Kirchhoff-Love Theory vs. Simo-Reissner Theory

The present work focuses on geometrically exact finite elements for highly slender beams. It aims at the proposal of novel formulations of Kirchhoff-Love type, a detailed review of existing formulations of Kirchhoff-Love and SimoReissner type as well as a careful evaluation and comparison of the proposed and existing formulations. Two different rotation interpolation schemes with strong or weak...

متن کامل

Mixed finite element formulation enriched by Adomian method for vibration analysis of horizontally curved beams

Abstract: The vibration analysis of horizontally curved beams is generally led to higher order shape functions using direct finite element method, resulting in more time-consuming computation process. In this paper, the weak-form mixed finite element method was used to reduce the order of shape functions. The shape functions were first considered linear which did not provide adequate accuracy....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2021

ISSN: ['0045-7825', '1879-2138']

DOI: https://doi.org/10.1016/j.cma.2021.113993